Thursday, July 18, 2013

CIE XYZ color space

CIE XYZ color space

Main article: CIE 1931 color space
CIE 1931 Standard Colorimetric Observer functions between 380 nm and 780 nm (at 5 nm intervals).
One of the first mathematically defined color spaces is the CIE XYZ color space (also known as CIE 1931 color space), created by the International Commission on Illumination in 1931. These data were measured for human observers and a 2-degree field of view. In 1964, supplemental data for a 10-degree field of view were published.
Note that the tabulated sensitivity curves have a certain amount of arbitrariness in them. The shapes of the individual X, Y and Z sensitivity curves can be measured with a reasonable accuracy. However, the overall luminosity function (which in fact is a weighted sum of these three curves) is subjective, since it involves asking a test person whether two light sources have the same brightness, even if they are in completely different colors. Along the same lines, the relative magnitudes of the X, Y, and Z curves are arbitrary. One could as well define a valid color space with an X sensitivity curve that has twice the amplitude. This new color space would have a different shape. The sensitivity curves in the CIE 1931 and 1964 xyz color space are scaled to have equal areas under the curves.
Sometimes XYZ colors are represented by the luminance, Y, and chromaticity coordinates x and y, defined by:
\begin{align}
  x &= \frac{X}{X + Y + Z} \\
  y &= \frac{Y}{X + Y + Z}
\end{align}
Mathematically, x and y are projective coordinates and the colors of the chromaticity diagram occupy a region of the real projective plane. Because the CIE sensitivity curves have equal areas under the curves, light with a flat energy spectrum corresponds to the point (x,y) = (0.333,0.333).
The values for X, Y, and Z are obtained by integrating the product of the spectrum of a light beam and the published color-matching functions.

No comments:

Post a Comment